

GaGe is a worldwide industry leader in high speed data acquisition solutions featuring a portfolio of the highest performance digitizers, PC oscilloscope software, powerful SDKs for custom application development, and turnkey integrated PC-based measurement systems.

APPLICATIONS

RADAR Design and Test

Signals Intelligence (SIGINT)

Ultrasonic Non-Destructive Testing

LIDAR Systems

Communications

Spectroscopy

High-Performance Imaging

Time of Flight

Life Sciences

Particle Physics

Oscar Express CompuScope 2-4 CH, 50 to 100 MS/s, 16-Bit, PCIe Digitizer

FEATURES

- 2 or 4 Digitizing Input Channels
- 100 MS/s or 50 MS/s Maximum Sampling Rate per Channel
- 65 MHz Analog Input Bandwidth
- 16-Bit Vertical A/D Resolution
- 2 GS (4 GB) Onboard Memory Standard, Expandable up to 8 GS (16 GB)
- Dual Port Memory with Sustained PCIe Data Streaming at 800 MB/s
- Full-Featured Front-End with AC/DC Coupling and 50 Ω /1M Ω Inputs
- Software Control of Input Voltage Ranges, Coupling and Impedances
- Ease of Integration with External or Reference Clock In & Clock Out
- External Trigger In & Trigger Out
- Synchronized Multi-Card Systems up to 8 Cards for 32 Channels
- Full-Height Full-Length PCI Express (PCIe) Generation 2.0 x8 Card
- Programming-Free Operation with GaGeScope PC Oscilloscope Software
- Software Development Kits Available for C/C#, LabVIEW and MATLAB
- Windows 10/8/7 and Linux Operating Systems Supported

Oscar Express CompuScope Simplified Block Diagram Calibration Reference Source CH₁ ADC 1 CH 2 ADC 2 **Dual Port FPGA** Acquisition Memory CH 4 ADC 4 Signal Conditioning Front End TRIG IN External Trigger Circuitry TRIG OUT CLK IN Master 10 MHz Reference Clock Crystal / External Clock Control Oscillator **CLK OUT** PCI Express (PCIe) Interface

MAIN SPECIFICATIONS

:	CSE4424	CSE4427	CSE4444	<u>CSE4447</u>
:	2	2	4	4
:	50 MS/s	100 MS/s	50 MS/s	100 MS/s
:	16-bit	16-bit	16-bit	16-bit
	: : :	: 2 : 50 MS/s	: 2 2 : 50 MS/s 100 MS/s	: 2 2 4 : 50 MS/s 100 MS/s 50 MS/s

DYNAMIC PARAMETER PERFORMANCE

 ENOB
 : 12.0 Bits

 SNR
 : 75.2 dB

 THD
 : -82.1 dB

 SINAD
 : 74.4 dB

 SFDR
 : 86.0 dB

Dynamic parameter measurements are done by acquiring a high purity 10 MHz sine wave with amplitude of 95% of the input range sampling at maximum 100 MS/s. These measurements were taken on the ± 500 mV input range using 50 Ω termination and DC coupling and with applied anti-aliasing filter. Dynamic parameter calculations are done from a 16 kiloSample Fourier Spectrum after applying a 7-term Blackman Harris Windowing Function to the time-domain waveform.

A/D SAMPLING

Rates per Channel, Model dependent (software selectable) 100 MS/s, 50 MS/s, 25 MS/s, 10 MS/s, 5 MS/s, 2 MS/s, 1 MS/s, 500 kS/s, 200 kS/s, 100 kS/s, 50 kS/s, 20 kS/s, 10 kS/s, 5 kS/s,

2 kS/s, 1 kS/s

Rate Accuracy : ±1 part-per-million

(0° to 50° C ambient)

ACQUISITION MEMORY

Acquisition memory size is shared and equally divided among all active input channels (1, 2 or 4).

Standard Size : 2 GS (4 GB)

Optional Sizes : 4 GS (8 GB), 8 GS (16 GB)

Architecture : Dual Port
Data Streaming : Yes

ANALOG INPUT CHANNELS

Connectors SMA

Impedance 50Ω or $1M \Omega$ (software selectable)

Coupling AC or DC (software selectable) **Analog Bandwidth** DC (50 Ω) = DC to 65 MHz

AC (1M Ω) = 10 Hz to 65 MHz

: ±100 mV, ±200 mV, ±500 mV, ±1 V, ±2 V, **Voltage Ranges**

±5 V, ±10 V, ±20 V, ±50 V (software selectable; ±10 V, ±20 V, ±50 V only

available on 1M Ω)

Flatness Within ±5 dB of ideal response to 50 MHz.

> Measured at 100 MS/s in the ±500 mV range with 50 Ω input impedance and 95% of full

scale amplitude.

DC Accuracy ±0.5%. Measured on ±500 mV, ±1 V, ±2 V

input ranges for both 50 Ω and 1M Ω input

impedance settings.

DC User Offset : ±1 x Full Range

(above ±5 V is limited to ±2.5 V)

 ± 15 V (50 Ω), ± 75 V (1M Ω on all but two Absolute Max. lowest Input Ranges, where Max is ±25 V)

Input

LOW-PASS FILTER

Type 3-pole, 1 per Channel

Cut-Off Frequency • 25 MHz

Operation **Individually Software Selectable**

TRIGGERING

Engines : 2 per Channel,

1 for External Trigger

Source Any Input Channel,

External Trigger or Software

Input Combination All Combinations of Sources Logically OR'ed

Slope Positive or Negative (software selectable) Sensitivity ±2% of Full Scale Input Range of Trigger

> Source. This implies that signal amplitude must be at least 4% of full scale to cause a trigger to occur. Smaller signals are rejected

Less than ±2% of Full Scale for Channel Accuracy

Triggering

32 points minimum. Can be defined with 32 Post-Trigger Data

point resolution.

EXTERNAL TRIGGER

Connector SMA Impedance $2k\Omega$ Coupling AC or DC Bandwidth : >100 MHz

Voltage Range ±1 V, ±5 V (software selectable)

TRIGGER OUT

Connector SMA Impedance 50 Ω **Amplitude** : 0 - 1.8 V **CLOCK IN**

Connector SMA

Minimum 1 V RMS, Signal Level

Maximum 2 V RMS

Impedance 50 Ω AC Coupling

Duty Cycle 50% ±5%

Input Modes External Clock or

10 MHz Reference Clock

External Clock Minimum 10 MHz to Maximum Sampling

Rates of 100 MHz or 50 MHz. Mode Rates

External Reference 10 MHz ±1000 ppm; the external Clock Mode Rate reference time base is used to

synchronize the internal sampling clock.

CLOCK OUT

Connector SMA 0 - 1.8 V Signal Level

Impedance 50 Ω Compatible

Duty Cycle 50% ±10%

Output Modes Maximum Sampling Clock Frequency or

10 MHz Reference Clock

Max. Frequency Maximum Sampling Rates,

100 MHz or 50 MHz.

10 MHz from External Clock, Min. Frequency

1 kHz from Internal Clock

MULTIPLE RECORD

Pre-Trigger Data : Up to 32 kS Total

32 points minimum. Can be defined with Record Length

32 point resolution.

TIME-STAMPING

Timing Resolution One Sample Clock Cycle Counter Turnover >48 Hours Continuous

MULTI-CARD SYSTEMS

Master/Slave Mode Provides synchronized triggering and

> sampling on all channels for all cards to create larger multi-channel systems.

Independent Mode Each card operates independently within

the system.

Number of Cards : 2 to 8 Cards for up to 32 Channels Total

DIMENSIONS

Size Single Slot, Full Height, Full Length

POWER CONSUMPTION

Power 25 Watts (typical)

PC SYSTEM REQUIREMENTS

PCI Express (PCIe) Slot : 1 Free Full-Height Full-Length

PCle Gen1, Gen2 or Gen3, x8 or x16 Slot

Windows 10/8/7 (32-bit/64-bit), **Operating System**

Linux - Requires SDK for C/C#

ORDERING INFORMATION

Hard	lware
------	-------

Model Number	A/D Resolution	# of Channels	Max. Sampling Rate per Channel	Memory Size	Order Part Number
CSE4424	16-bit	2	50 MS/s	2 GS (4 GB)	OSC-442-004
CSE4427	16-bit	2	100 MS/s	2 GS (4 GB)	OSC-442-007
CSE4444	16-bit	4	50 MS/s	2 GS (4 GB)	OSC-444-004
CSE4447	16-bit	4	100 MS/s	2 GS (4 GB)	OSC-444-007

Memory Upgrades

Memory Upgrade: 2 GS (4 GB) to 4 GS (8 GB)	MEM-181-203
Memory Upgrade: 2 GS (4 GB) to 8 GS (16 GB)	MEM-181-205

Cable Accessories

Set 1 Cable SMA to BNC	ACC-001-031
Set 4 Cable SMA to BNC	ACC-001-033

Master/Slave Upgrades

Master Multi-Card Upgrade	OSC-181-012
Slave Multi-Card Upgrade	OSC-181-013

eXpert FPGA Firmware Options

eXpert PCIe Data Streaming	STR-181-000
eXpert Signal Averaging	250-181-001

GaGeScope Software

GaGeScope: Lite Edition	Included
GaGeScope: Standard Edition	300-100-351
GaGeScope: Professional Edition	300-100-354

Software Development Kits (SDKs)

GaGe SDK Pack (includes C/C#, MATLAB, LabVIEW SDKs)	200-113-000
CompuScope SDK for C/C#	200-200-101
CompuScope SDK for MATLAB	200-200-102
CompuScope SDK for LabVIEW	200-200-103

WARRANTY

Standard two years parts and labor.

Unless otherwise specified, all dynamic performance specs have been qualified on engineering boards. All specifications subject to change without notice.

Updated May 23, 2016

GaGe is a product brand of DynamicSignals LLC, an ISO 9001:2008 Certified Company

Copyright © 2016 DynamicSignals LLC. All rights reserved.

900 N. State St. Lockport, IL 60441-2200

Toll-Free (USA and Canada):

Phone: 1-800-567-4243 Fax: 1-800-780-8411

Direct:

Phone: 1-514-633-7447 Fax: 1-514-633-0770

Email:

prodinfo@gage-applied.com

To find your local sales representative or distributor or to learn more about GaGe products visit:

www.gage-applied.com